Krylov Subspaces from Bilinear Representations of Nonlinear systems

نویسندگان

  • M. Condon
  • R. Ivanov
چکیده

For efficient simulation of state-of-the-art dynamical systems as arise in all aspects of engineering, the development of reduced-order models is of paramount importance. While linear reduction techniques have received considerable study, increasingly nonlinear model reduction is becoming a significant field of interest. From a circuits and systems viewpoint, systems involving micromachined devices or systems involving mixed technologies necessitate the development of reduced-order nonlinear models. From a control systems viewpoint, the design of controllers for nonlinear systems is greatly facilitated by nonlinear model reduction strategies. To this end, the paper proposes two novel model-reduction strategies for nonlinear systems. The first involves the development, in a novel manner as compared to previous approaches, of a reduced-order model from a bilinear representation of the system while the second involves a reducing a polynomial approximation using subspaces derived from a related bilinear representation. Both techniques are shown to be effective through the evidence of a standard test example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Krylov-Subspace Based Model Reduction of Nonlinear Circuit Models Using Bilinear and Quadratic-Linear Approximations

We discuss Krylov-subspace based model reduction techniques for nonlinear control systems. Since reduction procedures of existent approaches like TPWL and POD methods are input dependent, models that are subject to variable excitations might not be sufficiently approximated. We will overcome this problem by generalizing Krylov-subspace methods known from linear systems to a more general class o...

متن کامل

Krylov Subspace Techniques for Reduced-Order Modeling of Nonlinear Dynamical Systems

Means of applying Krylov subspace techniques for adaptively extracting accurate reducedorder models of large-scale nonlinear dynamical systems is a relatively open problem. There has been much current interest in developing such techniques. We focus on a bi-linearization method, which extends Krylov subspace techniques for linear systems. In this approach, the nonlinear system is first approxim...

متن کامل

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Krylov subspace methods for model order reduction of bilinear control systems

We discuss the use of Krylov subspace methods with regard to the problem of model order reduction. The focus lies on bilinear control systems, a special class of nonlinear systems, which are closely related to linear systems. While most existent approaches are based on series expansions around zero, we will extend the underlying ideas to a more general context and show that there exist several ...

متن کامل

Gmres for Sequentially Multiple Nearby Systems

An application of the Generalized Minimal Residual (GMRES) algorithm to the solution of sequentially multiple nearby systems of equations through the reuse of Krylov subspaces is presented. The main focus is on the case when only the right-hand side vector changes. However, the case in which both the matrix and the right-hand side change is also addressed. Applications of these formulations inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003